<acronym id="iqocq"><center id="iqocq"></center></acronym>
<acronym id="iqocq"><center id="iqocq"></center></acronym>
<acronym id="iqocq"></acronym><rt id="iqocq"><small id="iqocq"></small></rt><acronym id="iqocq"><center id="iqocq"></center></acronym>

當前位置: 首頁 / 學術科研 / 學術活動 / 正文


[發表時間]:2020-11-24 [瀏覽次數]:

講座主題:The (biased) Wisdom from the Crowd



講座地點:騰訊會議ID:724 498 620

嘉賓簡介:周臻,清華大學五道口金融學院助理教授,紐約大學博士。研究領域:金融市場摩擦的理論研究和信息經濟學,包括金融危機和監管、公司金融、系統性風險和金融網絡等相關問題的研究。曾在American Economic Review等國際權威期刊發表論文。

內容摘要:This paper studies a collective decision-making scheme: each agent pays a fixed cost to participate in a project and receives a common value, only if the number of participantssurpasses a pre-specified threshold. When each agent has some dispersed private knowledge about this common value (individual wisdom) and makes the participation decision simultaneously, we find information aggregation is not efficient. In the unique monotone equilibrium, agents choose to participate even when their private information indicates otherwise. As such, some projects with value lower than the participation cost get initiated. We extend the model to show that this bias cannot be corrected when agents play the game dynamically with opportunities to learn from the past history of participation. We further apply the insights from our theory to three applications, namely, the All-or-Noting crowdfunding, Peer-to-Peer (P2P) lending, and excludable public good provision.